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a b s t r a c t

The review of major 3-D global and regional real-time air quality forecasting (RT-AQF) models in Part I
identifies several areas of improvement in meteorological forecasts, chemical inputs, and model treat-
ments of atmospheric physical, dynamic, and chemical processes. Part II highlights several recent
scientific advances in some of these areas that can be incorporated into RT-AQF models to address model
deficiencies and improve forecast accuracies. Current major numerical, statistical, and computational
techniques to improve forecasting skills are assessed. These include bias adjustment techniques to
correct biases in forecast products, chemical data assimilation techniques for improving chemical initial
and boundary conditions as well as emissions, and ensemble forecasting approaches to quantify the
uncertainties of the forecasts. Several case applications of current 3-D RT-AQF models with the state-of-
the-science model treatments, a detailed urban process module, and an advanced combined ensemble/
data assimilation technique are presented to illustrate current model skills and capabilities. Major
technical challenges and research priorities are provided. A new generation of comprehensive RT-AQF
model systems, to emerge in the coming decades, will be based on state-of-the-science 3-D RT-AQF
models, supplemented with efficient data assimilation techniques and sophisticated statistical models,
and supported with modern numerical/computational technologies and a suite of real-time observa-
tional data from all platforms.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Part I of this review identified several inaccuracies in RT-AQF
and their possible causes. Factors related to meteorology
including inaccurate characterization of the transport (e.g., Eder
et al., 2006; Yu et al., 2007, 2008) and planetary boundary layer
(PBL) meteorological processes such as turbulent mechanisms and
vertical convection, cloud attenuation of photolysis (e.g., Eder et al.,
2006), local drainage and sea-breeze circulations (e.g., Hess et al.,
2004; Honoré et al., 2008) and variables such as temperature,
water vapor, inversion, and PBL heights (e.g., Berge et al., 2002;
Hess et al., 2004; McKeen et al., 2007; Hogrefe et al., 2007). Factors
related to boundary conditions (BCONs) include inadequate
representations of BCONs of O3, PM2.5, and PM10 (e.g., McKeen et al.,
2005; Yu et al., 2007; Chen et al., 2008; Chuang et al., 2011). Factors
All rights reserved.
related to emissions include uncertainties in anthropogenic emis-
sions of SO2 (e.g., McKeen et al., 2007), NOx (e.g., McKeen et al.,
2005, 2009), and VOCs (e.g., Shrivastava et al., 2010), NH3 (e.g.,
McKeen et al., 2007; Yu et al., 2008; Chuang et al., 2011), biogenic
VOC emissions (e.g., McKeen et al., 2005, 2007; Yu et al., 2008; Hu
et al., 2008; Chuang et al., 2011), wildfire emissions (e.g., Snow
et al., 2003; McKeen et al., 2007; Chen et al., 2008), primary PM
(e.g., Berge et al., 2002; Manins et al., 2002; McKeen et al., 2007;
Hogrefe et al., 2007; Manders et al., 2009; Shrivastava et al., 2010;
Chuang et al., 2011), dust (e.g., Jiménez-Guerrero et al., 2008), and
pollen emissions (e.g., Sofiev et al., 2006). Factors related to model
process treatments include inaccurate model treatments such as
urban processes (Baklanov et al., 2002), gas-phase chemistry (e.g.,
Chen et al., 2008; Cai et al., 2008), in-cloud oxidation of SO2 (Yu
et al., 2008; Cai et al., 2008), SOA formation (McKeen et al., 2009;
Shrivastava et al., 2010; Chuang et al., 2011), dry and wet deposition
(McKeen et al., 2007; Hogrefe et al., 2007). A factor related to model
configuration is the use of a coarse grid resolution (e.g., Cope et al.,
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2004). These studies indicate needs in improving several aspects of
RT-AQF. Recent scientific advances in some of these areas that can
lead to potentially more accurate RT-AQF are reviewed in Section 2.
Major numerical, statistical, and computational techniques to
further improve RT-AQF skills are described in Section 3. Section 4
presents several case studies to illustrate improved AQF skills and
capabilities with advanced treatments and computational tech-
niques. Major challenges and future prospects are provided in
Section 5.

2. Scientific advances to improve air quality forecasts

2.1. Improvement of meteorological forecasts

Ambient pollutant concentrations depend on precursor emis-
sions and meteorological conditions. Under typical emission
scenarios, it is local-scale circulations and diurnal variations of
meteorological variables such as solar intensity, temperature, wind
speed, and mixing height that determine the daily and seasonal
variations of chemical concentrations. Errors in meteorological
forecasts are often readily propagated into RT-AQFs. Several studies
reported a higher sensitivity of RT-AQFs to errors in the meteoro-
logical conditions, rather than in the emissions or chemical
mechanisms (e.g., Hess et al., 2004). On the other hand, conven-
tional meteorological approaches used in Numerical Weather
Prediction (NWP) models were not designed for representations of
air pollution episodes that typically have very weak dynamical
forcing (Baklanov et al., 2002; Seaman, 2003); meteorological
model improvements are, therefore, needed to support specific
needs for RT-AQFs. Specific needs and challenges of meteorological
modeling in support of air quality modeling and forecasting are
summarized in several studies (e.g., Seaman and Michelson, 2000;
Seaman, 2003; Dabberdt et al., 2004, 2006). For example, meteo-
rological models do not handle some small-scale circulations (e.g.,
land-sea breeze, topographic induced circulations) at scales of
<200 km and physical processes (e.g., turbulent mixing, PBL depth,
cloudiness, precipitation and fluxes of heat, moisture, momentum,
and mass) well. Most current meteorological measurements were
designed for NWP, additional measurements (e.g., PBL height)
under atmospheric conditions that are critical to air pollution
episodes (not necessarily for NWP) would be very useful for vali-
dation and improvement of the parameterizations representing
those conditions.

In addition, accurate meteorological model simulations at
a horizontal grid resolution of w1 km or smaller are urgently
needed to support RT-AQF in urban areas. This fine scaling
modeling of meteorology poses challenges as many parameteriza-
tions were developed for larger scale applications. Improved
parameterizations of physical processes are needed to more accu-
rately represent stable/stagnation conditions, turbulence, deep
convection, shallow clouds, low-level jets, nocturnal transport,
land-surface processes, and representations of feedbacks among
aerosols, clouds, and precipitation (Seaman, 2003; Dabberdt et al.,
2006). The parameterization of urban areas within operational
meso- and larger-scale models is particularly important but poorly
represented. Significant efforts in improving parameterizations for
urban meteorological modeling are ongoing and will be described
in detail in Section 2.3.1. Detailed land-surface modeling that
incorporates urban building structures and vegetative canopies
have been formulated and tested (e.g., Masson, 2000; Martilli et al.,
2003; Chen et al., 2004, 2011; Holt and Pullen, 2007; Miao et al.,
2009). Such improved land-surface treatments will greatly
improve the PBL representations and urban sub-layer flows (e.g.,
wind fields, thermodynamic structure, and turbulence) and
consequently RT-AQF.
2.2. Improvement of chemical inputs

Inaccuracies in chemical inputs including ICONs and BCONs and
emissions contribute to forecast errors. Chemical ICONs and BCONs
can be derived using three methods: outputs from a global (or
a synoptic scale) CTM, assumed climatological profiles, and adap-
tation of satellite and surface data for chemical profiles. Uncer-
tainties and limitations exist for eachmethod. The errors in a global
CTMwill cause errors in RT-AQF. Themeteorological fields obtained
from a global CTM are often at much coarser temporal (e.g., 6-h or
longer) and spatial (e.g.,>1� �1�) scales, therefore, an interpolation
is needed to match the grid spacing for RT-AQF at urban/regional
scales. Use of a global-through-urban model (e.g., GATOR-GCMOM,
Jacobson, 2002; GEM-AQ, Neary et al., 2007; GU-WRF/Chem, Zhang
et al., 2008, in review) with consistent model treatments can
reduce forecast errors. Satellite measurements of vertical profiles of
chemical species such as O3, NO2, NO3, CO, SO2, and HCHO, as well
as aerosols could be used to improve the accuracy of the ICONs and
BCONs. However, these satellite data are subject to uncertainties in
the retrieval algorithms and inaccuracies due to cloud contamina-
tion and reflectivity of the surface. An accurate characterization of
emissions of chemical species will directly improve model fore-
casting skills. Most RT-AQF models use offline emissions that are
often generated based on historical emission patterns and do not
account for variations under the current weather conditions. The
use of online emissions that reflect real-time emissions and
meteorological conditions will improve the accuracy of RT-AQF.
These emissions may include those from online mobile sources,
online biogenic sources, electric power generation; surface coating;
wildfires corrected based on satellite data; dust events; sea-salt,
and re-emissions from surfaces (e.g., NH3, Hg). Additional tech-
niques to improve accuracy of chemical ICONs, BCONs, and emis-
sions using data assimilation and addressing their uncertainties
using ensemble forecasting are described in Section 3.

2.3. Improvement of physical, dynamic, and chemical treatments

CTMs of RT-AQF systems include a large number of parameter-
izations for physical, dynamical, and chemical processes that
govern the fates of air pollutants. The improvement of process
treatments and parameterizations will yield long-term benefits to
the improvement of the accuracy and efficiency of the RT-AQFs at
various scales. Several excellent reviews of the modeling of those
processes exist (e.g., Russell and Dennis, 2000; Zhang, 2008;
Baklanov et al., 2011; Kukkonen et al., 2011) and we focus solely
here on three main aspects that are particularly pertinent for RT-
AQF: (1) the parameterization of the urban environment, (2) the
gas-phase chemistry representation, which is essential for O3, NO2,
and secondary PM predictions, and (3) aerosol dynamics and
chemistry, which is relevant not only to PM predictions but also to
O3 and NO2 predictions via the correct prediction of radiative
transfer, photolysis and heterogeneous reactions.

2.3.1. Parameterizations for urban sublayer processes and
physiographic data

Between 2011 and 2050, the world population is expected to
increase by 2.4 billion, passing from 6.9 billion to 9.3 billion, and by
2030, 60% of the world population will live in cities (UNDESA,
2011). Given a rapid urbanization, the close linkage of RT-AQF to
air pollution and associated human exposure in highly-populated
cities, much of these model improvement efforts have focused on
the parameterization of urban processes and the physiographic
data that are critical for accurate RT-AQF. A wide range of micro-
and mesoscale urban features can influence the atmospheric flow,
its turbulence regime, the micro-climate, and, accordingly, modify
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the transport, dispersion, and deposition of atmospheric pollutants
within urban areas and in their vicinity downwind.

Incorporation of the urban effects into urban- and regional scale
air quality models (AQMs) is generally carried out through
improvements of meteorological fields (wind speed, temperature,
turbulence, radiation, humidity, cloud water, precipitation) over
urban areas. In comparison with NWP models, the urbanization for
urban-scale RT-AQF models has specific requirements, e.g.,
requirements for a high resolution of the urban PBL vertical
structure, because the correct surface fluxes over the urban canopy
(UC) are not sufficient for urban-scale RT-AQF simulations. Accurate
vertical profiles of the main meteorological fields and turbulence
characteristics within the UC are needed to simulate the fate and
impact of traffic emissions. Other important characteristics for
pollutant turbulent mixing in urban-scale RT-AQF modeling is the
mixing height, which has a strong specificity and heterogeneity
over urban areas due to the internal boundary layer (BL) and
blending heights from different urban roughness neighborhoods.
The persistently increasing resolution in NWPmodels allows one to
reproduce more realistically urban air flows and air pollution, and
triggers interest in further experimental and theoretical studies in
urban meteorology. Recent work performed by a consortium of
FUMAPEX on integrated systems for forecasting urbanmeteorology
and air pollution (Baklanov, 2006), and by the U.S. EPA and NCAR
employing MM5 (Dupont et al., 2004; Taha, 2008a, b) and WRF
(Chen et al., 2004, 2011), as well as other relevant work (Baklanov
et al., 2008b, 2009), have disclosed many options and recommen-
dations for the urbanization of NWP and meso-meteorological
models. New local/street-scale RT-AQF systems with CFD models
coupled with city- and mesoscale 3-D RT-AQF models are actively
developed for industrial areas and megacities (e.g., San José et al.,
2006, 2009; Baklanov and Nuterman, 2009). Such a forecasting
downscaling system up to the street scale is being developed and
tested for Copenhagen within the European MACC project
(Baklanov and Nuterman, 2010).

Given different modeling objectives, there are three types of
urbanization UC schemes: (1) single-layer and slab/bulk-type UC
schemes, (2) multi-layer UC schemes, and (3) obstacle-resolved
microscale models. The first two categories are sufficiently simple
to be incorporated into operational atmospheric models. The third
corresponds to computational fluid dynamic-type explicit building
scale resolved models. The simplest approach is to modify the
existing non-urban approaches (e.g., theMonin-Obukhov similarity
theory (MOST)) for urban areas in an NWP model. Beginning with
Brown and Wiliams (1998), who included urban effects in their
turbulence closure scheme, methods with increasing levels of
sophistication have been introduced into current mesoscale
models. Masson (2000) included a detailed canyon energy balance
scheme into the surface energy balance, whereas Dupont et al.
(2004) included the effects from canyon walls, roofs, and streets
in each prognostic PBL equation. A similar, but less complex
urbanization scheme that shows promise toward capturing fine-
scale urban weather phenomena, was a single-layer scheme
developed by Kusaka and Kimura (2004a, b). These advances
require detailed urbanmorphological data (i.e., on the scale of a few
meters), including land use and land cover, surface roughness,
building geometric and thermal characteristics, and anthropogenic
heat fluxes (Ching et al., 2009). Thus, the next level of sophistication
in NWP models may be achieved through implementation of
advanced single- and multi-layer UC schemes, as it was imple-
mented in Enviro-HIRLAM (Baklanov et al., 2008a) and WRF/Urban
(Chen et al., 2011). This approach is a relatively inexpensive and
practical means of improving on the modified MOST approach. For
example, WRF/urban consists of a few options including a simple
bulk parameterization, a single-layer UCM, and a sophisticated
multi-layer UCM. It offers coupling to fine-scale CFD and large-eddy
models for transport and dispersion applications, a capability of
using high resolution urban land use, building morphology, and
anthropogenic heating data using the National Urban Database and
Access Portal Tool (NUDAPT) developed by Ching et al. (2009), and
an urbanized high-resolution land data assimilation system.

Other specific features also affect air pollution in urban areas,
but they cannot be realized via urbanization of NWP models and
should be considered readily within CTMs. These features include
(1) different pollutant deposition rates on specific urban surfaces,
e.g., on vertical walls, due to different building materials and
structure and vegetation; (2) chemical transformation specificities:
increasing the chemical species lifetime due to subgrid-scale par-
titioning of air masses (e.g., inside street canyons), the heteroge-
neity of solar radiation (e.g., street canyon shadows) for
photochemical reactions, specific aerosol dynamics, e.g., due to
resuspension processes; (3) heterogeneity in sub-grid scale emis-
sions of pollutants, especially due to traffic emissions, which needs
to be simulated on a detailed urban road structure, considering
traffic flow distribution; (4) pollutant indooreoutdoor interactions,
which require more comprehensive emission modeling inventory;
and (5) population exposure and air pollution adverse health
effects, which are the final and most important aim of RT-AQF. It is,
therefore, important to integrate RT-AQF and population exposure
modeling, which includes high-resolution databases of urban
morphology, population distribution and activities.

2.3.2. Other physical, dynamic, and chemical treatments
Although most current RT-AQF models have shown overall

good/satisfactory skills in forecasting O3 and PM2.5 in terms of
domain-average monthly/seasonal mean statistics, the compari-
sons of simulated and observed hourly O3 and PM2.5 values at
individual sites show poor performance in capturing diurnal vari-
ations (e.g., underpredictions of daytime peak O3 and over-
predictions of nighttime O3), spatial variation (large
overpredictions or underpredictions of PM2.5 at rural/national park
sites), weekend vs. weekday trends (e.g., underpredictions of
maximum 8-h average O3 on weekends), and magnitudes at loca-
tions with special terrain/emission/meteorological characteristics
(e.g., underpredictions in daytime O3 at coastal urban locations)
(e.g., Chen et al., 2008; Cai et al., 2008; Eder et al., 2009). While
inaccuracies in meteorological forecasts and model inputs (in
particular, emissions) undoubtedly contribute to such poor
performance, several deficiencies in the model treatments of
physical, dynamic, and chemical processes may contribute to such
poor performance. Incorporation of recent advances into RT-AQF
models will allow better representations of these processes, thus
potentially improving the accuracy of RT-AQFs.

2.3.2.1. Chemical kinetic mechanisms. Several deficiencies and
limitations in chemical kinetic mechanisms used in current RT-AQF
models were recently identified. Luecken et al. (2008) found that
SAPRC-99 predicted higher O3 concentrations than CB05 and CB-IV.
Faraji et al. (2008) attributed much of the difference between the
SAPRC-99 and CB-IV mechanisms to differences in the chemistry of
aromatics, especially mono-substituted aromatics such as toluene
under NOx-limited conditions. These studies indicated a large
uncertainty in the representation of organic chemistry, in partic-
ular, aromatic chemistry, in current gas-phase mechanisms.
Underpredictions of maximumO3 concentrations aremainly due to
the fact that CB05 and CB-IV mechanisms give lower O3 production
efficiency than observations. Kim et al. (2009) compared CB05 and
RACM2 within Polyphemus and found that uncertainties in the
kinetics of some major inorganic reactions (oxidation of NO by O3
and HO2) led to uncertainties commensurate with those due to the
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organic chemistry (taking into account compensation of errors in
the organic chemistry of the twomechanisms). Mollner et al. (2010)
found that the uncertainty in the kinetics of HNO3 formation (from
the reaction of NO2 with OH) could lead to differences of up to
several ppb in O3 concentrations. Kim et al. (2011a) in their
comparison of CB05 and RACM2 over Europe showed that uncer-
tainties in gas-phase chemistry impact SOA predictions because of
uncertainties in oxidant concentrations and in the formulation of
the organic chemistry (e.g., ring-conserving vs. ring-breaking
oxidation pathways of the aromatic chemistry).

Using measured OH and HO2 radical concentrations at an
urban supersite in New York City, Cai et al. (2008) found that their
RT-AQF model underpredicted O3 production efficiency due to
underpredicted odd hydrogen radicals (HOx, the sum of
OH þ HO2) in both summer and winter. Their study identified two
additional deficiencies in most current chemical mechanisms
used in RT-AQF models. First, the current gas-phase mechanisms,
developed and tuned largely for summer conditions, cannot
represent chemistry under winter conditions with low solar
radiation and low temperatures. Mis-representation of HOx
chemistry in winter can lead to inaccurate forecasts of secondary
PM formation. Second, the lack of a heterogeneous reaction of NO2
on the surface of aerosols to produce HONO in the model is a main
reason for the underpredicted OH levels. HONO photolyzes at
sunrise to produce OH, which affects daytime O3 production and
atmospheric oxidizing capacity. A modeling study by Lei et al.
(2004) showed that HONO formed through a heterogeneous
reaction of NOx on the surface of soot particles with a low limit of
uptake coefficient can lead to 4e12 ppb increase with an average
of 7 ppb in the daytime O3 levels in the Houston-Galveston area.
The occurrence of such heterogeneous reactions is supported with
increasing evidence from field and laboratory studies (e.g., Su
et al., 2008; Khalizov et al., 2010; Monge et al., 2010). A recent
review of heterogeneous uptake and reactions on the surface of
aerosols and clouds by Kolb et al. (2010) indicated the potential
importance of a large number of heterogeneous chemical
processes involving a number of trace gases (e.g., H2O, OH, HO2,
O3, NO2, NO3, N2O5, HONO, HNO3, SO2, chlorine nitrate (ClONO2),
bromine nitrate (BrONO2), hydrochloric acid (HCl), and HCHO) on
various types of surfaces including water surfaces, droplet
surfaces, sea-salt, ice surfaces, mineral dust, soot surfaces, and
solid and liquid organic surfaces as well as photochemistry on
atmospheric surfaces such as soot and organic particles. At
present, heterogeneous reactions other than heterogeneous
hydrolysis of N2O5 are not included in most RT-AQF models,
although some models such as Polyphemus include also hetero-
geneous reactions of HO2, NO3, and NO2 on particles. These
heterogeneous reactions can affect not only photochemical cycles
but also sulfate and nitrate formation (Dentener et al., 1996; Zhang
and Carmichael, 1999; Wang et al., in review). Another deficiency
is a lack of gas-phase chemistry involving halogen species, which
may be important in coastal urban areas. Recent field, laboratory,
and modeling studies have shown that the chlorine radical (Cl)
may enhance O3 levels by several tens of ppb in coastal urban
areas such as Houston (Tanaka et al., 2003; Chang and Allen, 2006;
Sarwar and Bhave, 2007).

Several improved gas-phase chemical mechanisms accounting
for some of the aforementioned deficiencies exist. For example,
CB05 with Cl extensions for the troposphere (CB05Cl) includes 21
gas-phase chlorine reactions. It has been implemented into CMAQ
and can increase O3 mixing ratios by up to 8 ppb in the Houston
area and 4 ppb in the New YorkeNew Jersey area (Sarwar and
Bhave, 2007). CB05 tends to underpredict the maximum O3 and
O3 production rates under low-NOx conditions. CB05 with a new
toluene mechanism (CB05-TU) has been developed to address this
limitation and it has been shown to perform better in predicting
maximum O3, O3 formation rate, NOx removal rate, and cresol
concentration (Whitten et al., 2010). An updated version of CB05,
i.e., CB6 with 77 species and 218 reactions, has been recently
developed and shown to reduce underprediction bias in maximum
O3 as compared with CB05 (Yarwood et al., 2010). Although it is not
used in most CTMs, a version of SAPRC-99 with 47 Cl reactions
exists (Carter et al., 1997). SAPRC-99 has been recently updated to
SAPRC-07 with 640 reactions among 222 species and a condensed
versionwith 286 reactions among 84 species (Carter, 2010a, b). The
major updates include new or improved representations of VOCs,
reformulated aromatic chemistry and peroxy reactions for a better
representation of SOA precursors, the addition of Cl chemistry
based on Carter et al. (1997) and with additional reactions, and the
updated rate constants and photolysis data. These updated gas-
phase mechanisms will potentially improve both O3 and PM
forecasts.

2.3.2.2. Aerosol chemistry and dynamics. Inaccurate representa-
tions of aerosol chemistry and dynamics contribute significantly to
the model biases in reproducing observed aerosol concentrations.
Current RT-AQF models are unable to accurately predict the mass
concentrations of SOA and to a lesser extent other volatile
components such as NO�

3 and NHþ
4 , the number concentrations and

size distributions of PM, as well as the mixing state and radiative
and hygroscopic properties of PM. Such inabilities severely limit the
accuracy of PM forecasts and the possible extension of RT-AQF
models to forecast other important variables that affect human
health and climate change (e.g., mass/number concentrations and
size distributions of nano-particles and aerosol radiative effects).
More accurate representations of aerosol chemistry and dynamics
based on up-to-date knowledge and research findings are needed.

Current regional and global AQMs significantly underestimate
ambient OM, owing to incomplete treatments of SOA formation as
well as uncertainties in the emissions of primary organic aerosol
(POA) (and their atmospheric transformations) and gaseous
precursors of SOA (e.g., Zhang et al., 2004; Yu et al., 2007; McKeen
et al., 2007). Even with recent addition of several anthropogenic
precursors (e.g., benzene, polycyclic aromatic hydrocarbons, and
long-chain alkanes) and biogenic species (e.g., isoprene and
sesquiterpenes) (Zhang et al., 2007; Couvidat and Seigneur, 2011),
new SOA formation processes (e.g., in-cloud aqueous-phase
oxidation of glyoxal and methylglyoxal and particle-phase oligo-
merization) (Pun and Seigneur, 2007; Carlton et al., 2010), and the
refinement of the SOA formation pathways accounting for the effect
of the NOx regime (Carlton et al., 2010; Kim et al., 2011b), significant
model underpredictions remain.

A recent breakthrough to this knowledge gap is the important
contributions of SOA from gas/partitioning of POA and gas-phase
oxidation of all low-volatility vapors generated from the evapora-
tion of POA. A new volatility basis-set (VBS) SOA modeling
approach (Robinson et al., 2007) was developed to efficiently treat
SOA production from semi-volatile organic compounds, interme-
diate VOCs, and aged POA. A revised VBS approach that is based on
volatility and oxidation state (i.e., the 2D-VBS) has also been
developed; it tacks the evolution of OA and OA precursor gases to
oxygenated organic aerosol through becoming increasingly
oxidized, less volatile, and more hygroscopic during photochemical
aging process (Jimenéz et al., 2009). Compared to the traditional
two-product approach that requires two SOA surrogates for each
reaction producing SOA, this new VBS approach has significantly
improved the current model’s efficiency in simulating SOA
(Robinson et al., 2007; Murphy and Pandis, 2009; Shrivastava et al.,
2010). The new VBS SOA module has been implemented into WRF/
Chem v3.3. Similarly, SVOC emissions and transformation using the
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hydrophobic/hydrophilic organic (H2O) molecular approach have
been incorporated into Polyphemus to provide similar improve-
ments and considerably reduce discrepancies between model
predictions and ambient measurements (Couvidat et al., 2011).
Additional updates, e.g., the partitioning coefficients of SOA species,
the volatility of POA, oxygen content, water solubility, and hygro-
scopicity of SOA should be made as they become available from
laboratory measurements.

While current RT-AQF models focus on PM mass, the expansion
of forecast products to include visibility, AOD, aerosol direct and
indirect radiative forcing requires an accurate representation of PM
number concentrations and size distributions, an inability that
current RT-AQF models inherited from CTMs (e.g., Zhang et al.,
2010a). The inaccuracy is largely due to inaccurate or missing
mechanisms for new particle formation and subsequent growth
processes. Various parameterizations for new particle formation
have been proposed based on theories of binary (Kulmala et al.,
1998; Yu, 2008), ternary (Merikanto et al., 2007; Yu, 2006), and
ion-induced or ion-mediated nucleation (Yu, 2010), as well as
limited observational data from laboratory/field studies (Sihto
et al., 2006; Kuang et al., 2008). These parameterizations are
being evaluated using increasingly available observed aerosol
number and size distributions on regional and global scales. Recent
studies showed substantial differences in the new particle forma-
tion rates calculated with different parameterizations and the
resulting particle number concentrations (by up to 18 and 3 orders
of magnitude, respectively) (e.g., Zhang et al., 2010a, b). Such
discrepancies can be propagated into climate change predictions,
leading to uncertainties in simulated aerosol direct and indirect
effects (Makkonen et al., 2009). These studies also indicated a need
to simulate early growth processes of newly formed particles before
they grow into CCN size.
3. Techniques to improve air quality forecasts

A number of techniques have been developed to improve RT-
AQF model performance in a shorter time frame, with a focus on
the improvement of accuracy of the model inputs and forecast
products. These methods are reviewed below.
3.1. Simple statistical techniques

3.1.1. Simple bias correction methods
Bias-correction techniques would be useful if they can correct

model bias and improve RT-AQF effectively, although they cannot
provide insights into model deficiencies or performance. Several
simple bias correction methods have been implemented in
a number of studies. The simplest and also most commonly-used
method is the mean subtraction method, in which the mean bias
is subtracted from the forecasted values at each monitoring site.
This method, however, does not always guarantee a positive value.
The second approach is the multiplicative ratio-adjustment
method, in which the forecasted value is multiplied by the mean
ratio of the sum of the observed value to the sum of the forecasted
value at each monitoring site. This alternative correction guaran-
tees that the concentrations will remain positive. McKeen et al.
(2005) used the two simple bias correction algorithms for fore-
casts at each monitor location. They found that both methods
reduced RMSE and increased RT-AQF skill, but the ratio-adjustment
method provided additional improvement over the mean
subtraction method for models with the highest biases. The third
method is to force the zero differences between observed and
simulated seasonal means by using an empirical linear fit between
forecasted and bias-corrected values.
3.1.2. Data fusion methods
Data fusion is generally defined as the use of techniques that

combine data frommultiple sources to produce a single output that
is more accurate and efficient than if they were achieved by means
of a single source. Data sources may include observations, rean-
alysis data, and model data sets obtained from statistical models or
1-3D models. When a 1-3D model is used as one of the sources of
data, one refers then to data assimilation. However, the combina-
tion of model outputs with observational data using kriging or
interpolation techniques to create a reanalysis is sometimes
referred to simply as data fusion. 3D RT-AQFmodels provide spatial
and temporal details but often exhibit bias; on the other hand,
a simple interpolation of monitoring data fails to take into account
spatial and temporal dependencies present in the data. The data
fusion methods have been used to overcome the limitations of RT-
AQF models and observations by taking advantage of many years of
community efforts in developing various statistical methods for RT-
AQF, rapidly-matured advanced deterministic models, and
increasingly available real-time observational data (e.g., AirNow or
AQI indices) and combining them in a coherent way.

Post-simulation data fusion methods include various statistical
methods that can help improve the forecasts when systematic
deficiencies occur. For example, the Model Output Statistics (MOS)
is a classical procedure in meteorology used to correct model
forecasts at individual stations (Glahn and Lowry, 1972). In MOS,
a site-dependent regression model, trained over past data, is
applied to forecast parameters. Training seasons and implementa-
tion of the statistical MOS relies on a training procedure: obser-
vations over a past period and simultaneous forecasts are required.
Compared with the raw forecast from CHIMERE, the MOS forecast
reduced the RMSE from 19.5 mg m�3 to 18.0 mg m�3 on average for
rural stations and improved the hit rate by 10%e16% (Rouïl et al.,
2009). Guillas et al. (2008) used the Model Diagnostic and
Correction (MDC) approach to downscale and improve local RT-
AQFs using CTM outputs at 70 � 70 km and observed wind speed
and precipitation from the U.S. EPA monitoring stations in the
Atlanta area and showed that the statistically-adjusted outputs
reduced forecast errors by up to 25%. Several advanced data fusion
methods developed for improvement of retrospective air quality
modeling can be adapted for RT-AQF. For example, Cowles and
Zimmerman (2003) developed a Bayesian modeling approach for
spatio-temporal data from two networks that account for possible
differences in measurement errors, biases, and variances.

3.2. Advanced approaches based on chemical data assimilation

3.2.1. Data assimilation and its applications in RT-AQF
As a subset of data fusion, data assimilation refers to the process

by which models and measurements are combined to produce an
optimal representation of the state of the atmosphere. Data
assimilation methods include nudging methods, statistical
methods, variational methods (e.g., 3-dimensional variational
method (3D-Var), 4D-Var), and sequential methods (e.g., optimal
interpolation (OI), EKF, and EnKF). The types of observational data
include those in-situ, airborne, and satellites. Data assimilation has
been extensively used in the meteorological community, but its
emergence in air quality modeling only dates back to the mid
1990s. For example, trace gas satellite data such as O3, NO2, and N2O
columns and vertical profiles of O3, CH4, HNO3, ClONO2, N2O5, N2O,
and CFC-11 were assimilated into stratospheric CTMs (e.g., Errera
and Fonteyn, 2001) and tropospheric CTMs (e.g., Elbern et al.,
1997) using various data assimilation approaches including OI
and variational methods. OI was applied for the assimilation of AOD
(e.g., Generoso et al., 2007) and NO2 column mass (e.g., Wang et al.,
2011). Wu et al. (2008) compared four assimilation methods for
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assimilation of O3 ground measurements: OI, EnKF, reduced-rank
square root KF and 4D-Var. Satellite data assimilation has been
particularly useful to improve stratospheric or upper-tropospheric
O3 (e.g., Eskes et al., 1999), boundary layer O3 (e.g., Boisgontier
et al., 2008), and sand and dust storm (Niu et al., 2008). Since the
first applications of CDA for RT-AQF of Elbern and Schmidt (2001),
CDA has been increasingly applied for RT-AQFs (e.g., Chai et al.,
2006; Carmichael et al., 2008; Wu et al., 2008; Pagowski et al.,
2010). Table 1 summarizes major approaches for CDA. A brief
review of some of these approaches such as 4D-Var and EnKF can
be found in Carmichael et al. (2008).

3.2.2. Overview of the methodologies based on CDA
The use of data assimilation techniques and its impact on the

system’s forecasting ability depend on the specific dynamics of the
model. Global meteorological and oceanographic models have
fewer forcings than AQMs: radiative, friction, and above all the
ICON. For CTMs, the ICON is one forcing of many, less and less
influential with time, whereas emission fields and sinks are
strongly driving forcing fields. For limited area models and long-
lived pollutants, BCONs may be as influential as emissions. Radia-
tive forcings and species subsidence from the free troposphere are
other forcings to account for.

Contrary to meteorology, the uncertainty attached to these
forcing fields can be high. Emission uncertainty for usual air
pollutants ranges from 20% to 60% (Hanna et al., 2001; J.-P. Fontelle,
Centre Interprofessionnel Technique d’Études de la Pollution
Atmosphérique (CITEPA), personal communications, 2010). Each of
the data assimilation methods is different and has its own merits.
For example, sequential methods rely on the assimilation of
observations as they arrive to produce the best estimate of the
chemical state of the atmosphere (Evensen, 2007). Differently,
variational methods gather observations over a time period, and
find the optimal model trajectory that accounts for these data,
essentially following a least squares approach (Talagrand, 1997).
Both methods have been developed and tested in the late 90’s and
early 00’s on actual regional air quality applications (Segers et al.,
2000; Elbern and Schmidt, 2001).

Although the air quality data assimilation community has
inherited from meteorological advances, it has its own history and
specific developments. For air quality studies, one can distinguish
several types of application. Typical problems are the regulated air
quality species: O3 and precursors, VOCs, sulfate, PM, and OA
with RT-AQF implementations; or the industrial/natural
accidental atmospheric tracers (radionuclides, volcanic ashes). The
Table 1
Major techniques for chemical data assimilation.

Category Subcategory Strength

Sequential
method

Optimal
interpolation

Very simple and robust, only opti
state estimation

Kalman Filter Simple, propagate errors
Extended Kalman
Filter (EKF)

Handles non-linearity

Ensemble Kalman
Filter (EnKF)

Handles non-linearity, no model a
trivial parallelization of ensemble

Particle filter Full Bayesian and non-Gaussian tr
errors, no model adjoint, trivial pa
of ensemble propagation

Variational
method

3D-Var As simple as OI, handle non- Gaus
observation operator

4D-Var Smoothing within the assimilation
handles non-linearities, full (two-
propagation of errors, handles par
estimation
mathematical techniques implemented to improve the ICONs are
described in this section. The application of data assimimilation to
the retrieval of parameter fields (i.e., inverse modeling) will be
described in Section 3.3. But as mentioned earlier, because they
represent major driving forces, this retrieval could also be an
integrated component of the forecasting algorithm.

3.2.3. Sequential methods
Sequential methods are based on the Best Linear Unbiased

Estimator (BLUE), that allows to find the best compromise between
a set of observations and prior (or background) information on the
system state, such as a previous forecast. This estimation represents
the analysis step of the algorithm. It assumes a linear or linearized
observation operator. For BLUE, it assumes a linear observation
operator. Yet the assumption can be alleviated by using a linearized
version of the operator, or a variational scheme (e.g., 3D-Var). It also
relies on second-order moments closure of all statistics. A stronger
but common assumption is that the statistics of the errors (obser-
vation, background) are Gaussian. In between analyses, the infor-
mation on both the optimal state and possibly the uncertainty
statistics on this state are propagated.

Examples of sequential methods include OI, KF, and many
variants/extensions of the KF such as the EnKF. OI is a method that
propagates the best estimate, but does not propagate any statistical
information (Daley, 1993). It is coupled to a BLUE analysis. Statis-
tical information must be provided from other source than the
model forecast, such as climatological statistics on errors. OI is
sometimes called kriging of innovation (Blond and Vautard, 2004).
Although it is less and less considered in meteorology, it is still of
importance for air quality applications because it does not require
high computational resources and is yet efficient (Wu et al., 2008).
Because of its lesser sophistication, it is also quite easy to imple-
ment and is, therefore, used to test data assimilation on new species
(Tombette et al., 2009).

The KF is a self-consistent extension of BLUE that propagates the
best estimate as well as the error covariance matrix that describes
the uncertainty about it. It is defined for linear observation and
model operators. Its non-linear extension, the extended Kalman
filter (EKF) is based on the linearized versions of these operators. As
a major drawback of the method, the state error covariance matrix
cannot be stored for large applications, because it contains
N(N þ 1)/2 degrees of freedom if N is the dimension of the state
vector. Beside, the propagation of the matrix would require 2N
model runs. That is why the direct use of the KF, or EKF is restricted
to small to moderate size applications. The reduced-rank square
Limitation

mal Does not propagate errors

Handles linear systems only, too costly for large systems
Uses the model tangent linear which is not robust, too
costly for large systems

djoint,
propagation

Sampling/reduction errors, needs inflation, localization

eatment of
rallelization

Collapse of the ensemble

sian Does not propagate errors

window,
ways)
ameter

Requires model adjoint, does not allow easy access to
posterior errors, parallelization not as simple as EnKF;
difficulty in the computation of the adjoint due to the
high nonlinearities; may give negative concentrations
and emissions
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root filter method is useful since the use of KF cannot be contem-
plated without the reduction of the matrix of error covariance that
needs to be propagated. Since error covariancematrices are bilinear
quantities it can be shown that the KF can be formulated consid-
ering the propagation of the columns of the square root of such
a positive definite matrix. Besides, the analysis step can also be
“factorized” in terms of these modes. Then the reduction step
consists in keeping only a limited group of r<< N biggest modes, of
high uncertainty, that will be propagated later on in the forecast
step. Thesemodes are often augmented with additional modes that
represent other source of errors, such as model error, so prominent
in air quality. The reduced-rank square root filter has been applied
to air quality in several studies (e.g., Segers et al., 2000; Hanea et al.,
2004; Wu et al., 2008).

The EnKF (Evensen, 1994) pushes the sampling concept of the
reduced square root filter one step further, making it a Monte Carlo
scheme. An ensemble of state vectors is used to generate error
statistics, through the empirical mean and error covariance matrix
of the ensemble. These empirical moments are used in the BLUE
analysis at the analysis step. In the stochastic version of the filter,
there is an analysis for each member of the ensemble, with the
same gain matrix for all, but a differently perturbed observation
vector for each member (Burgers et al., 1998). This is meant to
account for the proper statistics. During the forecast step, all
members are propagated by themodel (possibly non-linear). This is
one major advantage because no linearization is necessary and no
bias is thus introduced. The forecast statistics are recomposed later
using the propagated ensemble. The EnKF and its variants are now
a method of choice in geophysical data assimilation, but it has
weaknesses that are shared with the other filters.

Several issues are common for the sequential methods, namely,
inflation, localization, and model error. First, the sampling of the
errors statistics with the ensemble is only an approximation of the
true statistics. It leads to an underestimation of the errors that
needs to be compensated by an ad hoc inflation (Anderson, 2001) of
the errors statistics. The ensemble dispersion is artificially
increased to avoid any overconfidence that could lead to filter
divergence. These errors can be estimated online and adaptively
(Constantinescu et al., 2006a). Errors can also be modeled through
a perturbation scheme that is meant to represent un-identified
errors. Because of many uncertain forcings, this generation of
errors has been emphasized in air quality data assimilation
(Constantinescu et al., 2006a; Wu et al., 2008). Model errors,
including emission, BCONs, kinetic rates error, are so important in
air quality that the inflation operation needs to be implemented via
stochastic perturbations of each member of the ensemble. Each
perturbation is a linear combination of identified sources or errors.
Their variability is often represented by log-normal distributions
given the nature of the uncertain variable (positive quantity). The
finer these sources of model errors are diagnosed, the better the
filter is expected to perform. In addition, the sampling schemes can
generate long-range spurious correlations that need to be removed.
In AQMs, it can generate unphysical blobs of pollutant in the
domain. That is why localization schemes were created. One solu-
tion is to apply a short distance correlation function to the esti-
mation of the error covariance matrix via a Schur product that
guarantees that the resulting matrix is still a covariance matrix
(Hamill et al., 2001). Another way is for each grid cell of the domain
to assimilate observations only locally (Houtekamer and Mitchell,
1998). Both methods yield very satisfying localization. However it
introduces ad hoc parameters that tune this localization, such as
a correlation length. Finding the optimal parameters is a currently
active field of research (for inflation and localization). Localization
has been used in CDA only recently (Eben et al., 2005;
Constantinescu et al., 2006b).
There are many other sequential methods (e.g., Singular Evol-
utive Extended KF (SEEK), Singular Evolutive Interpolated KF
(SEIK), unscented filter, Ensemble Transform KF (ETKF), Local
Ensemble Transform KF (LETKF)). Most of them are similar to the
filters mentioned above, with similar performance. Choosing one of
them is less of an issue than inmeteorology wheremodel errors are
less intrusive, making the precise choice of the algorithm a real
issue. A few of them have been specifically applied to photo-
chemistry (Hanea et al., 2004). Particle filters are sequential data
assimilation techniques that apply the Bayes formula, from which
the BLUE analysis can be derived under the Gaussian hypothesis
(which is thus not needed any more). Because of a filter divergence
(at the analysis step, the particles tend to collapse onto a single
one), it is difficult to implement them on high-dimensional
geophysical problems. The interest of particle filters for RT-AQF is
not demonstrated, and a matter of debate, since even though the
physics may be very non-linear leading to non-Gaussian distribu-
tion of errors, the dynamics is essentially not chaotic (Bocquet et al.,
2010).

3.2.4. Variational methods
BLUE can be replaced with a 3D-Var analysis, which, for a linear

observation operator is equivalent. Therefore, the analysis step can
be made variational (leading to the minimization of a cost function,
also referred to as objective function, in place of the application of
a linear algebra formula) with a natural and exact extension to
a non-linear observation operator. But such a variational approach
can also be carried out for the forecast step. The optimization
operates on a time window (typically 24 to 48-h). A least squares
cost function is designed to compute the mismatch between the
model trajectory and the observation, and the ICON and prior
information on this condition (which could be climatological or
resulting from a previous forecast). Because time is now accounted
for in the window, the variational method deals with 4-D fields,
hence its name 4D-Var (Le Dimet and Talagrand, 1986). This is easy
to write but enforcing the fact that the 4-D field of concentration is
a model trajectory is difficult and related to optimal control theory.
The minimization of this cost function requires the computation of
the adjoint of the tangent linear of the forecast model (in addition
to the observation operator). This can be a formidable task for
complex geophysical numerical models, even though automatic
differentiation software can partially help in that matter. This is the
main drawback of the variational approach, which is often
compensated by its benefits (no loss of information within the
window, optimal treatment of non-linear operators). However, 4D-
Var has been successfully implemented operationally in meteo-
rology, giving a decisive advantage to the centers operating the
method, even though it has been shown recently that the EnKF
could compete (Buehner et al., 2010). 4D-Var has been tested and
implemented quite early in air quality (Elbern and Schmidt, 1999,
2001), and is also used in the operational EURAD RT-AQF model in
Cologne.

When the retrieval of emission parameters is not taken into
account, Wu et al. (2008) have shown that OI and EnKF perform
better than 4D-Var. This is because 4D-Var does not account for
model error. This could be achieved by using the so-called weak-
constraint 4D-Var that allows for model errors. This is, however,
very close to a 4D-Var that would allow retrieving not only an initial
state but also model parameters. Indeed, 4D-Var lends itself to the
optimization of parameters along with the initial state condition. It
was recommended early to optimize a selection of parameters of
the emission field for an optimal forecast (Elbern et al., 2000). This
is why much more than in other geophysical fields, data assimila-
tion in air quality cannot be separated from the inverse modeling of
parameters. Difficulties come from the specification of background
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inter-species error covariance for concentrations at the initial time
or emissions over the whole time window. It also comes from the
computation of the adjoint because of the high nonlinearities in the
chemistry, in the aerosol evolution and/or the thermodynamics
related to multiphasic microphysics.

3.3. Inverse modeling using data assimilation

Different from ICONs, the impact of uncertainties in othermodel
inputs such as emissions and BCONs and model parameters such as
chemical reaction kinetic rate constants will persist throughout the
simulation. Beyond the estimation of the chemical state of the
atmosphere, the retrieval of the forcing fields, such as emissions,
BCONs or model parameters, has its own interest. For emissions,
this is the so-called top-down approach: improving inventories
through observations and a CTM. Previous studies have demon-
strated the effectiveness of using various inverse modeling
methods to obtain the spatial distribution of pollution emissions as
well as to improve the forecast skill of AQMs (e.g., Xu et al., 2008).
For large fields, 4D-Var is themethod of choice. Its feasibility on real
emission factor of NOx was proven by Quélo et al. (2006). The large-
scale inversions of the precursors of O3, SO2, SO2�

4 , NH3, VOCs, etc.,
were successfully carried out by Elbern et al. (2007) over Europe.
The inventories were corrected and were supporting the general
belief on the economical growth of eastern Europe and the emis-
sion control over western Europe. Hakami et al. (2005) estimated
BC emissions over East Asia using the adjoint STEM model.
Yumimoto and Uno (2006) applied 4D-Var to a CTM and estimated
CO emissions over East Asia. Koohkan and Bocquet (submitted for
publication) also applied 4D-Var to estimate CO emissions, but
over France and simultaneously using a statistical sub-grid model
to counteract strong representativeness errors. As a long-term
forecasting tool, the system lead to a strong reduction of the bias,
a high correlation of more that 70%, when traditional CO regional
CTM simulations do not usually exceed 30%. Recent developments
and results of chemical adjoint are presented by Henze et al. (2007).
In another example, a factor in the dust emission parameterization
scheme was estimated using the lidar vertical profiles of dust
particles (Yumimoto et al., 2007). Underestimates in the dust
emission fluxes were corrected and more reasonable dust
concentrations were achieved.

For linear models, or model amenable to linear effective models,
the direct use of the BLUE analysis can be carried out to constrain
the BCONs with observations. Roustan and Bocquet (2006) carried
this approach for gaseous Hg over Europe, implicitly correcting the
northern BCON, thereby reflecting the influence of Hg depletion
events. When a few parameters are to be estimated, 4D-Var might
be inappropriate, and stochastic filters are usually efficient. For
instance, Barbu et al. (2009) estimated the kinetic rate of conver-
sion of SO2 to SO2�

4 in Europe. Using a multi-purpose 4D-Var,
Bocquet (in press) has simultaneously optimized the emission, the
Kz and Kh parameters, and several micro-physical paramaters (e.g.,
dry deposition velocity, wet scavenging ratio). Applied to a tracer
dispersion event (Chernobyl), it leads to a strong reduction of bia-
ses, and of the representativeness and model errors (80% correla-
tion in validation).

The retrieval of parameters is however a difficult task because it
requires specifying the uncertainty of parameters that are often
very different in nature. The uncertainties are themselves poorly
known. Besides, their response function may be very non-linear,
and the optimization is numerically difficult with an outcome of
uneasy interpretation. Another difficulty of inverse modeling and
data assimilation in atmospheric chemistry is the positivity of
concentrations and emissions (e.g., Constantinescu et al., 2006a).
Indeed since data assimilation techniques are based on the BLUE
paradigm, they assume Gaussian errors, which contradicts the
positivity of the related variables (Bocquet et al., 2010). An unap-
pealing but widespread solution, which may often suffice, is to set
negative concentrations or emission fluxes to zero. Another possi-
bility is to use non-Gaussian error priors based on positive distri-
butions. Either via a Bayesian or Maximum Entropy on the Mean
inference, they lead to non-quadratic cost-functions for variational
data assimilation (Bocquet, 2005a, b, 2008). By constraining the
system even more, this usually results in better retrievals. The
methodology has been successfully applied to the ETEX I and II,
Algeciras, and Chernobyl dispersion events (Bocquet, 2007; Krysta
and Bocquet, 2007; Davoine and Bocquet, 2007). It has been applied
to the estimation of the cesium-137 and iodine-131 Fukushima
Daiichi accident source terms (Winiarek et al., 2012), with a math-
ematically rigorous estimation of the uncertainty of the retrievals.

Multiscale data assimilation methods can be used to comple-
ment some limitations in observations. At high resolution, the
number of variables of the emission field is very large compared to
the number of observations. Besides, because of the dispersive
nature of atmospheric transport, the information content of the
observations is not shedding light on all grid cells, especially those
away from the monitoring network. An idea is to define a relevant
adaptive grid for the emission fields that take into account the
network and the meteorology for an optimal assimilation of
observations (Bocquet, 2009; Bocquet et al., 2011). The adaptive
emission field grid is coarse in the regions with no influence on the
observations, whereas the grid is refined close to the stations to the
highest available resolution. Another method is the optimizing the
monitoring network for an optimal forecast. This method and the
targeting of sondes in optimal locations for observations have been
proven useful in meteorology. However the global observational
system is very dense and the gain is relatively limited. In air quality,
with a still limited impact of satellite data, a sparser ground
network, and higher representativeness errors, optimal design of
the networks for nowcasting of O3 fields (Nychka and Saltzman,
1998; Wu et al., 2010; Wu and Bocquet, 2011), or targeting of
observations for forecasting a contaminant plume (Abida and
Bocquet, 2009), have been proven quite useful.

3.4. Advanced approaches based on ensemble forecasting

3.4.1. Ensemble forecasting and its applications in AQMs
Ensemble forecasting is a numerical prediction method that is

used to produce a representative sample of the possible future
states of a model system. Ensemble forecasting can be imple-
mented using multiple models or one model but with different
inputs (e.g., varying meteorological input forcings, emission
scenarios, chemical ICONs) or different process parameters (e.g.,
varying chemical reaction rates) or different model configurations
(e.g., varying grid spacings). Since their first application to one CTM
with three different meteorological inputs by Vautard et al. (2001),
ensemble techniques have been applied to many RT-AQF systems.
The work of Delle Monache et al. (2004) represents one of the first
efforts for the multi-model real-time O3 forecasts. Similar to the
improvement found for O3 ensemble forecasting (e.g., McKeen
et al., 2005; Pagowski et al., 2005; Delle Monache et al., 2006a),
ensembles of the PM2.5 forecasts showed significant statistical
improvements over any individual forecast (McKeen et al., 2007). A
possible reason for such improvements is that ensemble averaging
removes part of the unpredictable components of the physical and
chemical processes involved in O3 and PM formation, as compared
with any deterministic ensemble member. However, very few
applications addressed uncertainty quantification or probabilistic
forecasts based on ensembles of forecasts (e.g., Delle Monache
et al., 2006b, 2008; Vautard et al., 2009; Garaud and Mallet,
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2011). The resulting ensemble forecast is usually a weighted linear
combination of the individual ensemble members. Inherent limi-
tations are associated with individual ensemble members. Accu-
racy may be sensitive to the weighting factors used. Most methods
compute the ensemble forecast at the observed locations only.
Some combination methods (e.g., sequential aggregation) may not
account for observational errors. More sophisticated approaches
aimed at improving ensemble forecasting have been developed.
One such method is the ensemble forecast of analyses (EFA) of
Mallet (2010). EFA couples an ensemble forecasting approach (i.e.,
sequential aggregation) with CDA techniques to forecast an analysis
from data assimilation, instead of observations; it performs well
with 28% reduction in RMSE of surface O3 forecasts as compared to
a reference simulation.

3.4.2. Overview of the methodologies based on ensemble
forecasting

AQMs are limited by large uncertainties in their physical and
numerical formulations, and their input data. As a result of the
multi-scale nature of the modeled phenomena, the models rely on
approximate sub-grid parameterizations that introduce errors on
the mean concentration fields. The computational costs may be so
high that only simplified chemical mechanisms and aerosol
dynamics can be considered. Such simplifications are also attrib-
uted to the lack of appropriate data. The numerical discretization is
another source for errors, e.g., because of rather coarse model grid
cells, or because of the limited number of aerosol size sections. A
CTM relies on many uncertain input fields whose errors propagate
to all components of the CTM’s state. Following Hanna et al. (1998,
2001), one can assume that the meteorological fields are available
with �20% uncertainty or more, that the anthropogenic emissions
can show higher uncertainty than �50%, and that the biogenic
emissions are known only within a factor of two. Many other data
(e.g., BCONs, land use cover) are subject to significant errors. In this
context, it is doubtful that picking a singlemodel with a single set of
input data is the best strategy for forecasting. Instead, a stochastic
standpoint let the concentrations be considered as random vari-
ables with some joint probability distribution. Ensemble
approaches were developed so that all the uncertainty sources can
be taken into account in the forecasting process. Several forecasts
are produced by various numerical models that rely on different
physical formulations and input data sets. The generation of an
ensemble based on a single model with perturbed input data is
referred to as Monte Carlo simulations. When the ensemble relies
on different physical and numerical models, with or without
perturbations in the input data, the approach is referred to as
a multi-model approach. If the ensemble properly represents the
Table 2
Major techniques for ensemble forecasting.

Category Strength

Monte Carlo simulations Monte Carlo simulations are reasonably easy
to implement and their mathematical
framework is well known.

Multimodel ensembles The ensemble takes into account the
uncertainty in the models’ formulation. It can
be combined with Monte Carlo simulations.
The variety of the models can bring a lot of
information.

Sequential aggregation Strong improvements can be expected from
the most advanced methods. These methods
are robust, fast and easy to implement. They
require tuning of few parameters.

Coupled sequential aggregation
and classical data assimilation

It overcomes the limitations of sequential
aggregation without loss of performance.
uncertainties, it can sample the probability distribution of the
output concentrations or at least estimate the uncertainty of its
forecasts. The empirical variance of the ensemble provides a confi-
dence interval along with the forecast itself (whichmay be given by
an ensemble mean). If the uncertainty description is accurate
enough (which is seldom the case), an application is forecasting the
exceedance of some regulatory threshold. This activity can turn into
probabilistic forecasting when the objective is forecasting the
probability that a given event occurs.

In all ensemble applications, a limiting factor is the computa-
tional cost. The generation of an ensemble of size N may require N
times the computational resources of one model simulation. The
actual cost can be lower if the simulation system is able to share
certain demanding operations (in pre-processing) between
different simulations. However, the cost remains high, especially in
a forecasting context. In practice, 10-100 simulations can reason-
ably be carried out onmodern forecasting platforms. The size of the
ensemble may therefore not be large enough in order to properly
approximate the probability density function of the models’ state
(which usually contains one to ten million components). Table 2
summarizes major ensemble forecasting techniques.

3.4.3. Monte Carlo (MC) simulations
MC simulations consist in carrying out a number of simulations

with perturbed input data. The perturbations are sampled accord-
ing to probability distributions chosen by the modeler, and the
perturbations associated with two simulations should be inde-
pendent (in the basic MC approach). As the number of simulations
increases, it is possible to obtain an approximation of the mean,
standard deviation, and even probability distribution of the output
concentrations. The mean of the simulations’ concentrations
converges to the expectation of the concentrations, with a rate
independent of the dimension (i.e., number of chemical species and
model’s grid cells) but at a slow rate (i.e., with a convergence rate
proportional to the square root of the number of simulations). One
clear advantage toward MC simulations is their simplicity, since
they solely require the ability to run simulations based on inde-
pendently perturbed input data. Hanna et al. (1998) carried out
Monte Carlo simulations for O3 over New York City during three
days in 1988. They perturbed 109 parameters of the model UAM-IV
based on the probability density functions (normal or log-normal)
that were advised by ten experts. A similar study was carried out by
Hanna et al. (2001) over the eastern U.S. in order to evaluate the
impact of emission control strategies. Beekmann and Derognat
(2003) and Deguillaume et al. (2008) applied the MC approach
over the Paris area and computed a posteriori uncertainty estimates
with a Bayesian approach. Recent work tried to better describe the
Limitation

The uncertainties due to the model physical and numerical formulations
are essentially ignored.

The approach may be difficult to implement in practice. The number of
models may be low when the models are provided by different teams.

They do not always take into account observational errors, and the spatial
distribution of the weights may not be reliable. Usually, the forecasts for
non-observed species cannot be improved.

The method requires an ensemble and the application of a data assimilation
method, which are not available on every operational platform.
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uncertainties in the input fields with spatialized perturbations
(Boynard et al., 2011). Spatialized perturbations can soften or
prevent the covariance localization issue, which is especially
important in a data assimilation context. Perturbing the meteoro-
logical fields raises difficulties related to the consistency among the
perturbed fields. A better option is the use of meteorological
ensemble forecasts as input to the CTMs (e.g., Straume et al., 1998;
Straume, 2001).

3.4.4. Multimodel ensembles
Multimodel ensembles are more complex to build since they

involve CTMs based on different physical and numerical formula-
tions. Contrary to MC simulations where the shape of the pertur-
bations is an explicit parameter, the differences between two
models from a multi-model ensemble are difficult to anticipate and
control. Nevertheless, these differences address what Pinder et al.
(2009) call structural uncertainty that cannot be represented with
MC simulations alone. The members of the ensemble can be either
models developed by different teams (e.g., McKeen et al., 2005; van
Loon et al., 2007) or models built within the same numerical
platform (e.g., Mallet et al., 2007). The former case leads to
ensembles with typically 4-10 models. Such an approach was
carried out for uncertainty estimation for photochemistry (Delle
Monache et al., 2006a; Vautard et al., 2009). In the case of
models built on the same platform, the platform should allow
flexible changes in the physical and numerical formulations (Mallet
and Sportisse, 2006). This strategy makes it possible to generate
large ensembles and to fully control the design of the ensemble
(Garaud and Mallet, 2010). Garaud and Mallet (2012) showed that
the MC approach fails to generate a member with higher spatio-
temporal variability than the observations because the model
lacks variability and this is not compensated by the perturbations in
the input data. On the contrary, themulti-model ensemble contains
several models whose variability is greater than that of the obser-
vations. It is possible to combine a multi-model and MC approach,
so as to take into account all uncertainty sources. Pinder et al.
(2009) proposed an intermediate strategy where the uncertainty
due to inputs is approximated with the sensitivity to these data,
which allows to generate large ensembles at lower cost.

3.4.5. Ensembles calibrated for uncertainty estimation
An important concern with ensemble simulations is the accu-

racy of their representation of the uncertainties. Besides an a priori
knowledge of the model performance, the main additional source
of information lies in the observations. Hence scores involving
observations were introduced to measure the quality of an
ensemble, in terms of uncertainty estimation. We assume the
ensemble contains N members. The most common score is based
on the rank histogram. It checks whether the N members of the
ensemble properly sample the concentrations (seen as random
variables). It is primarily used to check that an uncertainty estimate
(in practice, an empirical standard deviation) is reliable. For each
observation, the corresponding ensemble concentrations are sorted
in increasing order, and a rank among the sorted concentrations is
given to the observation. The rank is 0 when the observation is
lower than all concentrations, and is N when the observation is
greater than any concentration. The rank histogram displays the
number of observations per rank. If the ensemble is well balanced,
the rank histogram should be flat. If not, the shape of the histogram
reveals the deficiency of the ensemble. For instance, it is common
to obtain a U-shaped histogram which reveals an underestimation
of the uncertaintydwith many observations outside the envelop of
the ensemble.

In order to measure the quality of a probabilistic forecast, one
usually evaluates: (1) the reliability which relates to the
consistency between observed occurrence frequencies and proba-
bilistic forecasts, (2) the resolution which is the ability to produce
significantly different probabilistic forecasts for some subsets of
events (which the climatological forecast cannot achieve), and (3)
the sharpness which measures the ability to forecast extreme
events. The reliability diagram and the Brier score are two classical
tools. They are always computed for a given event, and they assess
how efficiently the ensemble produces the probability of the event
to occur. The reliability diagram plots the observed occurrence
frequency of an event against the forecast probability of this event.
If the ensemble is reliable and if a large number of occurrences are
observed, the observed frequency should be the same as the fore-
cast probability. Hence a perfect reliability diagram should coincide
with the first diagonal. An ensemble with no skill will lead to a flat
diagram since, for any forecast probability, the mean occurrence
(i.e., climatological) frequency of the event is observed. The Brier
score is the mean quadratic error of probabilistic forecasts. For each
date i, the ensemble forecasts a probability pi, between 0 and 1, and
the observed “probability” oi is either 0 if the event did not occur, or
1 otherwise. The quadratic error at that date i is given by (pi � oi)2.
Because of the uncertainties, the probability pi cannot be exactly
0 or 1 at all dates. Hence the Brier score cannot be zero, even if the
ensemble accurately estimates the model uncertainty. This makes
the score difficult to interpret, but the Brier score provides an
important reference when comparing the abilities of two
ensembles.

The ensemble verification scores serve as objectives in the
design of an efficient ensemble. In Monte Carlo simulations, one
may adjust the uncertainty levels associated with the input data;
with multi-model ensembles, one may include more models with
further changes in their formulation. However, the optimization of
the ensemble can hardly be automatic: besides the algorithmic
difficulty, the cost of ensemble simulations is so high that an
optimization loop (involving the generation of a new ensemble at
each iteration) can barely be an option. There is however a need for
an automatic calibration of ensembles for reliable uncertainty
estimation. Daily RT-AQF is especially demanding since an
ensemble well balanced over a large period of time may fail on
a shorter period. One option is to adjust the uncertainty estimates
with statistical methods. Another option developed by Garaud and
Mallet (2011) consists in generating a large ensemble that prefer-
ably overestimates the uncertainties, and to select a sub-ensemble
that performs well according to one of the aforementioned scores.
This approach allows one to extract a 20 to 30-member sub-
ensemble out of a 100-member ensemble, and it allows relying
on an ensemble re-calibrated before every forecast.

3.4.6. Sequential aggregation
In order to produce a single improved forecast out of an

ensemble, a few methods were proposed in recent years. The
simplest methods are the ensemble median and the ensemble
mean. The former was essentially applied for passive tracers (Riccio
et al., 2007). The second was applied for photochemical applica-
tions (Delle Monache and Stull, 2003; McKeen et al., 2005; van
Loon et al., 2007). In these cases, the ensemble mean showed
some improvement in the forecasts (though not for all scores), but
there is no guarantee that the ensemble mean will improve the
forecast in any casedand in several unpublished cases, the
ensemble mean actually showed lower performance than the best
model in the ensemble.

In order to better use the information provided by the ensemble,
weighted linear combinations of models were developed. Before
every forecast, the weights are computed based on past observa-
tions and past and present model simulations. The forecasts are
then linearly combined with the chosen weights, which produces
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a single aggregated forecast, hopefully more efficient than the
forecast of any member of the ensemble. This process is repeated
sequentially before each forecast. We therefore refer to this
approach as sequential aggregation. Following the super-ensemble
approach of Krishnamurti et al. (2000), least-square methods were
applied by Mallet and Sportisse (2006). The weights of the linear
combination are determined so as to minimize the mean quadratic
discrepancy with observations over a learning period. The weights
have a limited validity in time, which requires that they be
constantly recomputed over a (moving) learning period of typically
30 days before the forecast. Despite the practical efficiency of the
approach, there is little theoretical support and guarantees as of the
performance.

Pagowski et al. (2006) applied regression to determine the
weights of the linear combination. In order to adapt the weights in
time and not to require large data sets, they applied the dynamic
linear regression (West and Harrison, 1999), which allows the
characteristics of the random processes to be time-dependent. This
approach proved to be efficient for O3 forecast over southern
Canada and the eastern U.S. during 56 summer days. A robust
approach relying on machine learning methods was proposed by
Mallet et al. (2009). The weights can be computed with methods
such as the exponentiated gradient (for convex combinations) or
the ridge regression (for non-convex combinations) (Cesa-Bianchi
and Lugosi, 2006) in discounted versions. The main advantage of
these methods is their mathematical framework that guarantees, in
the long run, a performance (compared to the observations) at least
as good as that of the best constant (in time) linear combination.
This guarantee holds whatever the sequence of observations and
models’ forecasts may be, which makes the method very well
adapted to operational forecasts. They have been applied for several
years on the operational platform Prev’air (see Section 4.2). A
drawback of this approach is that the observation errors are not
taken into account.

3.4.7. Coupled sequential aggregation and classical data
assimilation

Themain drawback of the previous aggregationmethods is their
lack of support for multivariate fields. The weights are computed
per monitoring station and observed species. In the best cases, the
weights are learned at all observed locations at once, so that they
should have some spatial validity. A solution is to forecast the
analyses (generated by some data assimilation methods) instead of
the observations (Mallet, 2010). The analyses are supposed to be
the best a posteriori knowledge of the true atmosphere state, and
they are multivariate fields. A machine learning algorithm can be
employed to forecast these analyses, with weights computed
independently for every grid cell and chemical species. This
approach guarantees that, in the long run, the aggregated fields
forecast the analyses at least as well as the linear combination of
models’ forecasts with the best constant (in time, but space- and
species-dependent) weights. Even if the weights are computed
independently in every grid cell, the approach is able to capture all
mean patterns found in the analyses. Since summer 2010, this
ensemble method is operationally used for the Prev’air platform.

4. Case studies

4.1. RT-AQF with WRF/Chem-MADRID and WRF-CMAQ

WRF/Chem-MADRID of Zhang et al. (2010b) was deployed for
RT-AQF at a horizontal grid resolution of 12-km in the southeastern
U.S. Its forecasting skill in terms of spatial distribution, temporal
variation, and domainwide statistics is evaluated using available
U.S. EPA AirNow hourly observations for August 3e9, 2008 and
intercompared with that of the U.S. NOAA’s WRF-CMAQ of Eder
et al. (2009). There are a number of differences between the two
model systems. First, WRF/Chem-MADRID is an online-coupled
meteorology and chemistry model, whereas WRF/CMAQ version
4.6 is an offline-coupled model. Second, WRF/Chem-MADRID uses
the Advanced Research WRF (ARW) dynamic core of WRF (WRF/
ARW), which is different from the nonhydrostatic mesoscale model
(NMM) dynamic core (WRF/NMM) used in WRF/CMAQ. The phys-
ical configurations forWRF/NMM are based on those used in Eta for
simulating cloud microphysics, boundary layer, surface layer,
cumulus parameterizations, and longwave and shortwave radiation
without cloud effect on the optical depth. They are different from
those used in WRF/Chem-MADRID. Third, although both models
use the same CB05, they use different aqueous-phase chemistry,
the CMU bulk aqueous-phase mechanism in WRF/Chem-MADRID
and a modified RADM aqueous-phase chemistry in WRF/
CMAQv4.6. Fourth, WRF/Chem-MADRID uses the MADRID 1 aero-
sol module of Zhang et al. (2010a, b) which represents the particle
size distribution with eight size sections over the PM aerodynamic
diameter range of 0.0215e10.0 mm. WRF/CMAQ uses the aerosol
module AERO4 that represents the particle size distribution with
three lognormally-distributed modes for the size range of
0.001e10 mm. They both use ISORROPIA v1.7 to simulate the ther-
modynamic equilibrium of inorganic PM, but differ in the treat-
ments of SOA formation and PM dynamic processes such as
nucleation, condensation, and coagulation. For example, WRF/
CMAQ utilizes a SOA module that accounts for SOA formation from
8 classes of condensable SVOCs, 6 from anthropogenic precursor
VOCs (from 3 classes of aromatics including xylene, toluene, and
cresol, and 1 class of higher alkanes) and 2 from biogenic mono-
terpenes. In WRF/Chem-MADRID, the SOA module includes 7
classes of condensable SVOCs from anthropogenic VOCs (including
high-yield aromatic species such as toluene, ethylbenzene, ethyl-
toluenes, and n-propylbenzene; and low-yield aromatic species
such as xylenes, trimethylbenzenes, dimethylethylbenzenes and
tetramethylbenzenes) and 25 classes of BVOCs (from 18 BVOCs
including monoterpenes, sequiterpenes and isoprene).

Fig. 1 compares 6-day mean simulated concentrations of
maximum 8-h average O3 and 24-h average PM2.5 and OM from
both models and available AirNow observations. The performance
statistics for meteorological and chemical predictions are summa-
rized in Tables 3 and 4. Both models give similar daily maximum 8-
h average O3 mixing ratios in terms of spatial distribution, magni-
tude, and performance statistics, with a slightly better statistical
performance forWRF/CMAQ. Themoderate overprediction of O3 by
both models is mainly due to inaccurate biogenic and point source
emissions. Other possible explanations include overpredictions of
temperature at 2-m (T2) and underprediction of wind speed at 10-
m WS10 (see Table 3), as well as possible inaccuracies in simulated
PBL height. Different meteorological predictions by WRF/ARW and
WRF/NMM are partially responsible for differences between WRF/
Chem-MADRID and WRF/CMAQ simulations, in addition to their
differences in chemistry and aerosol treatments. WRF/Chem-
MADRID gives slightly higher biases for WS10 but lower biases
for T2 and total precipitation. It predicts a daytime PBL height that
is lower by 12% domainwide than that of WRF/CMAQ, leading to
slightly higher O3 mixing ratios and slightly worse A, CSI, POD, and
FAR, as compared with WRF/CMAQ.

For 24-h average PM2.5, WRF/Chem-MADRID performs better
than WRF/CMAQ in terms of both statistics (Table 4) and spatial
distributions (Fig. 1). For example, daily absolute MBs on August
7e9 are <1 mg m�3 for WRF/Chem-MADRID but w3 mg m�3 for
WRF/CMAQ. Both models underpredict PM2.5 concentrations
during the 6-day time period, due likely to overpredictions in
precipitation and T2, incorrect biogenic emissions, uncertainties in



Fig. 1. Overlay plot of six-day (August 4e9, 2008) mean concentrations of maximum 8-h average O3 (top), 24-h average PM2.5 (middle), and 24-h average OM (bottom) for WRF/
Chem-MADRID (left) and WRF/CMAQ (right) (circles indicate observations from AIRNow, http://www.epa.gov/airnow, no observations of OM were available from AIRNow).
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Table 3
Performance statistics evaluation of meteorological forecasts for August 4e9, 2008.

Hourly T2 (�C) Hourly WS10 (m s�1) Daily total precipitation (mm day�1)

WRF/Chem- MADRID WRF/CMAQ WRF/Chem- MADRID WRF/CMAQ WRF/Chem- MADRID WRF/CMAQ

Mean Obs 25.2 25.2 4.5 4.5 1.4 1.4
Mean Sim 25.3 25.8 3.1 3.6 1.8 2.1
MB 0.1 0.6 �1.4 �0.9 0.4 0.7
RMSE 2.1 2.5 3.0 3.1 10.1 6.6
NMB (%) 0.5 2.2 �31.2 �19.6 26.3 47.2
NME (%) 6.0 7.3 43.2 43.4 209.5 187.2

T2: Temperature at 2-m;WS10:Wind Speed at 10-m. Obs: Observation; Sim: Simulation; MB: Mean Bias; RMSE: Root Mean Square Error; NMB: Normalized Mean Bias; NME:
Normalized Mean Error.
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emissions of primary PM and PM precursors such as NH3 and VOCs,
as well as incomplete model treatments such as SOA formation
from glyoxal. Bothmodels give similar spatial distributions of SO2�

4 ,
NHþ

4 , other inorganics, and EC, but WRF/Chem-MADRID tends to
give higher values due likely to lower PBL height and less over-
prediction of precipitation. Much larger differences exist for OC (see
Fig. 1), NO�

3 , and Naþ between the twomodels. Several studies have
reported underpredictions in OC due to missing precursors/
processes in CMAQ (e.g., Tesche et al., 2006; Zhang et al., 2007).
Missing of some SOA species due to incorrect biogenic emissions
and SOA formation from sesquiterpenes and isoprene can explain
in part the low OC predictions from WRF/CMAQ. By contrast,
MADRID treats additional SOA formation from sesquiterpenes and
isoprene, leading to higher OC values and better agreement with
observed PM2.5. WRF/CMAQ distributes sea-salt emissions into the
coarse mode, whereas WRF/Chem-MADRID simulates sea-salt
emissions online that produces sea-salt in both fine and coarse
modes, leading to higher PM2.5 concentrations over oceanic areas
than those simulated by WRF/CMAQ. The inclusion of reaction
between sea-salt and HNO3 in WRF/Chem-MADRID, which is not
considered in WRF/CMAQ, may affect NO�

3 predictions in coastal
areas. When WS10 is strong along the coast and over the ocean,
emitted sodium chloride (NaCl) can react with HNO3 to form
sodium nitrate (NaNO3). The equilibrium approach is used to
simulate gas/particle partitioning in WRF/Chem-MADRID, which
leads to high NO�

3 in the fine PM size range (Zhang et al., 2010b).
These results show an overall improved PM2.5 forecast with more
detailed model treatments.

4.2. Ensemble modeling with sequential aggregation and coupling
with data assimilation

Ensemble forecasting has proven to be helpful in RT-AQF by
Prev’air. This platform is operated by the French Institut National de
l’EnviRonnement industriel et des rISques (INERIS). Every day, it
forecasts hourly concentrations for O3, NO2, PM2.5, and PM10, over
Table 4
Performance statistics of chemical forecasts for August 4e9, 2008.

Maximum 1-h O3 (ppb) Maximum 8-h

WRF/Chem- MADRID WRF/CMAQ WRF/Chem- M

Mean Obs 54.8 54.8 48.7
Mean Sim 62.6 61.8 56.8
MB 7.8 7.0 8.1
RMSE 14.6 13.6 13.2
NMB (%) 14.3 12.7 16.7
NME (%) 20.3 18.4 20.9
A (%) 89.7 90.9 72.3
CSI (%) 17.1 23.7 35.7
POD (%) 47.1 64.0 85.2
B 2.2 2.3 2.2
FAR (%) 78.7 72.6 61.9

Obs: Observation; Sim: Simulation; MB: Mean Bias; RMSE: Root Mean Square Error; NM
Success index; POD: Probability Of Detection; B: Bias; FAR: False Alarm Ratio.
France, for the current day and the next two days. Several AQM
simulations, among which five with aerosols, are carried out over
Europe, and six simulations are carried out at the global scale
(2� � 2� resolution), over Europe (0.5� � 0.5� resolution), or France
(0.15� � 0.1� or 0.1� �0.1� resolution). The simulations use CHIMERE
(Schmidt et al., 2001), MOCAGE (Peuch et al., 1999), and a configu-
ration of Polair3D from Polyphemus (Mallet et al., 2007). These
simulations define over France (but with different resolutions) an
eight-member ensemble for gases and a five-member ensemble for
PM. Analyzing the ensemble led to the conclusion that it can be
efficiently exploited for ensemble forecasting, despite its small size.
After a test period in 2008 (Debry et al., 2009), sequential aggre-
gation has been applied since 2009 to these ensembles in order to
produce daily ensemble forecasts on the platform.

In 2009, a first version of ensemble forecasting relied solely on
machine learning algorithms (i.e., sequential aggregation),
following Mallet et al. (2009). The performances of the models
were mainly measured with correlation, bias and RMSE, using
hourly observations from about 150 French stations representative
of the simulation spatial resolution (i.e., near-source stations were
not included). After the night simulations, the weights were
computed based on all hourly observations and corresponding
simulated concentrations from the previous days. The discounted
ridge regression was employed to provide weights for the current
day and the next two days, which is a fast operation since learning
algorithms have low computational requirements. Compared to the
model with the lowest RMSE, the RMSE of the ensemble forecast
was typically 15%e30% lower. For peak O3, the lowest model RMSE
was 19.8 mg m�3 while the RMSE of the ensemble forecast was
16.7 mg m�3 Fig. 2 shows the daily O3 concentration profile, aver-
aged over all monitoring stations and for summer 2009, for the
aggregated forecast as well as for the eight individual forecasts on
the operational platform Prev’air. A near-perfect agreement was
obtained using ensemble forecast.

As of 2010, the ensemble approach coupled with data assimi-
lation is employed to produce the ensemble forecast. The analysis is
average O3 (ppb) 24-h average PM2.5 (m g m�3)

ADRID WRF/CMAQ WRF/Chem- MADRID WRF/CMAQ

48.7 14.8 14.8
56.4 12.6 10.6
7.7 �2.2 �4.2

12.2 6.7 7.3
15.8 �15.1 �29.0
19.3 35.9 39.7
76.3 65.1 64.2
39.4 36.0 24.7
88.0 46.6 28.4
2.1 0.8 0.4

58.3 38.8 34.6

B: Normalized Mean Bias; NME: Normalized Mean Error; A: Accuracy; CSI: Critical



Fig. 3. Comparison of predicted annual CO concentrations (ppm), using the original
non-urban version (right columns) and improved city-scale MM5 model integrated
with the urban air pollution modelling system (central columns), in comparison with
measured values (left columns) from seven monitoring stations in London (Sokhi et al.,
2006).

Fig. 2. Daily O3 concentration profile, averaged over all monitoring stations and during
summer 2009, for the aggregated forecast as well as for the eight individual forecasts
on the operational platform Prev’air. The values of the aggregated forecasts are plotted
with a thick black line; the observations are marked with the stars; and the other lines
are for eight individual models available during this period (taken from Debry and
Mallet, in preparation).
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computed for hourly and daily O3 with the kriging of the discrep-
ancy between a reference simulation and the observations.
According to É. Debry (INERIS, France, personal communications,
2010), RMSE for the current day is reduced by 18% for hourly O3
concentrations (from 19 mg m�3 for the best model to 15.6 mg m�3),
and by 27% for daily O3 values (from 17.8 mg m�3 for the best model
to 12.9 mg m�3). Note that the best model for hourly values has an
RMSE as high as 23.4 mg m�3 on daily O3; hence the ensemble
forecast reduces the error by 45% compared to this model. On the
Prev’air platform and in non-operational studies, the EFA ensemble
forecasting brought larger improvements than the other methods
(ensemble-based or assimilation-based), in terms of statistics and
retrieval of spatial patterns. However, it does not or slightly
increases the performance of the forecasts of threshold
exceedances.
4.3. FUMAPEX urban air quality information and forecasting system
(UAQIFS)

Urban and street air pollution is usually higher than pollution in
rural areas and associated with significant adverse health effects.
Prediction of health effects and implementation of urban air quality
information and abatement systems require accurate simulation of
air pollution episodes and population exposure on city and street
levels, as well as the indooreoutdoor relationship of the pollutants.
As a result, RT-AQF needs to consider a multi-scale modeling
approach for urban areas with downscaling by different models
from meso- and city-scale with parameterizations of sub-grid
urban effects to the local- and micro-scales. However, most of the
current models fail to produce realistic meteorological fields for the
urban-scale RT-AQF. The EU project FUMAPEX developed a novel
approach that integrates the latest developments in meteorolog-
ical, air quality, and population exposure modeling into UAQIFS.
Fig. 3 shows the application of an improved UAQIFS for the London
metropolitan area (Sokhi et al., 2006). The improved city-scale
MM5 integrated with the urban air pollution modeling system, in
comparison with the original non-urban version, showed
a substantial improvement of the RT-AQF for urban areas: differ-
ences between predicted and observed values can be reduced by up
to a factor of three by using the high resolution urban land cover
characteristics.
5. Major challenges and future prospects

5.1. Summary of advances in sciences and computational
technology

Addressing model deficiencies/limitations, improving scientific
treatments, and incorporating recent and emerging advances based
on up-to-date knowledge are key to the improvement of accuracy
of RT-AQF. Recent scientific advances in urban parameterizations,
gas-phase chemistry and aerosol chemistry and dynamics can
potentially improve the accuracy of RT-AQF. A number of numer-
ical, statistical, and computational techniques have been developed
with a focus on improving inputs and forecast products. These
include various bias adjustment techniques to correct biases in
forecast products, various CDA techniques for improving chemical
ICONs and emissions, and various ensemble forecasting approaches
to quantify the uncertainties of the forecasts or to improve the
forecasts. There is a growing trend to combine some of these
approaches (e.g., the KF predictor bias-corrected ensemble fore-
casts, EFA) to achieve optimal accuracy. RT-AQF provides extraor-
dinary opportunities for applications of advanced mathematical,
statistical, and computational techniques. Continuous development
efforts on those techniques will significantly reduce forecasting
biases and yield immediate benefits in accuracy.

5.2. Current limitations, major challenges, and future directions

3D RT-AQFmodels have provided a powerful tool for RT-AQF but
there remain some limitations in many aspects of the models.
Addressing these aspects poses significant challenges for RT-AQF, as
highlighted below.

5.2.1. Challenges in improving accuracy of meteorological
forecasting

The most challenging meteorological forecasting in support of
RT-AQF lies in weather patterns with weak synoptic, dynamical
forcing (e.g., high pressure systems, calm winds, stagnant condi-
tions). The major challenges include:

� Improve many existing parameterizations in meteorological
models that were previously designed for large-scale applica-
tions or develop new parameterizations for finer scale appli-
cations. These may include schemes to represent PBL,
radiation, turbulence, dispersion, deep and moist convection,
shallow clouds, precipitation, land-surface processes, and sea-
breeze circulation.
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� Improve meteorological observing systems by including air
quality-related variables (e.g., PBL height, vertical profiles of
temperature, specific humidity, and wind speed) in routine
networks, make more continuous real-time satellite/sounding
data. Couple the improved models with improved observing
systems through implementation of various data assimilation
and modeling approaches to improve the model performance.

� Conduct sensitivity simulations of historic episodes using
different combinations of physical options for major processes
and nudging options to identify an optimal combination that
may achieve the best model performance for RT-AQF over
a specific domain and time period.

� Develop and improve online-coupled meteorology and chem-
istry models to accurately represent their interactions and
feedbacks, in particular, the feedbacks among aerosol-cloud-
precipitation. Key processes that need attentions include
aerosol activation/resuspension, nucleation and auto-
conversion of cloud droplets to rain droplets, in-cloud and
below-cloud scavenging, the effect of aerosols on ice crystal
formation, and aerosol and cloud micro-physical effects on
convection and precipitation, and convection-microphysics
feedbacks.
5.2.2. Challenges in improving accuracy of RT-AQF model inputs
More efficient approaches are needed to generate inputs as

accurately and quickly as possible and to adjust them with
technically-sound approaches efficiently due to the time pressure
of RT-AQF. The major challenges include:

� Develop more reliable instrumentations for measurements of
emissions (e.g., continuous emission monitoring) and the
integration of the field/laboratory measurements into online
emission modules.

� Develop and improve online emission modules needed to
simulate weather-dependent emissions such as emissions of
BVOCs, dust, sea salt, VOCs from surface coating, and re-
emitted species (e.g., NH3) from various surfaces (e.g., soils,
vegetations, and water), and wildfire emissions.

� Develop and improve methods for inversion modeling with
CDA (e.g., 4D-var) to better estimate primary emissions of
pollutants (e.g., SO2, NOx, CO, NH3). While some methods do
exist, areas with difficulties remain, e.g., the retrieval of
parameters affecting emissions, the qualification of the asso-
ciated uncertainties, the nonlinearity of the chemical system,
and the estimation of the real emissions instead of numerical
adjustments compensating for errors in other inputs.

� Reduce uncertainties in ICONs and BCONs through more
frequent adaptation of observations from surface networks,
sounding, and spaceborne sensors by using CDA that continu-
ously ingests real-time observations or efficient bias correction
methods based on previous day’s observations.

� Develop global-through-urban online-coupled models to
provide dynamic ICONs and BCONs for nested simulations at
small scales to reduce uncertainties caused by inconsistencies
in the model treatments between offline-coupled global and
urban/regional models.
5.2.3. Challenges in improving representations of urbanization
A reliable urban-scale forecast of meteorological and chemical

fields is critical to urban emergency management systems for air-
quality warnings, accidental toxic releases, fires, and chemical,
radioactive, or biological substance releases due to terrorist actions.
The potential risk of these real and frightening emergency episodes
has recently emerged as homeland security issues. An accurate
representation of urban structure, meteorology, chemistry, and
heat island effect, remains a key to the improvement of RT-AQF at
such fine scales. Major challenges include:

� Improve major urban parameterizations and schemes
including those for atmospheric chemistry and specific aerosol
dynamics due to heterogeneity of emissions and solar radiation
inside street canyons, the urban PBL structure, the estimations
of urban energy balance, urban vegetation, sub-grid cloud
treatments, as well as the snow treatments.

� Improve treatments for subgrid-scale representations of local
concentrations in urban areas by including accurate repre-
sentations of local emissions, dispersion, and chemistry
processes.

� Improve urban characterizations by increasing pointwise
measurements within the urban canopy for parameterization
validation and by using high-resolution, remotely-sensed data
to derive urban parameters (e.g., land use, surface albedo,
emissivity, and heterogeneity).

� Utilize CFD models to develop and improve urban parameter-
izations to enhance the understanding of the most important
mechanisms of the urban atmospheric canopy layer and urban
roughness sub-layer. Develop and improve online mobile
source emission inventories (i.e., dynamic traffic models
coupled with instantaneous or near-instantaneous emission
factors) for incorporation into RT-AQMs. These models could
provide the most accurate emissions at a scale of a few meters,
thus greatly improving the capability of the forecasting skill in
urban areas.

� Develop/improve human exposure models to simulate the
neighborhood-scale population exposure to major air pollut-
ants and forecast environmental health. Such exposure
modeling establishes quantitative linkages between air pollu-
tion and epidemiological impacts at urban levels and repre-
sents a very important direction of practical usage of RT-AQFs.
5.2.4. Challenges in improving representations of other processes
and aspects

Forecasting errors and biases are often caused by inaccuracies
and uncertainties in model representations of chemical and phys-
ical processes of air pollutants. Other sources of errors such as
uncertainties and inconsistencies in real-time observations ob-
tained with various platforms may also contribute to forecasting
errors and biases. Major challenges include:

� Establish/expand comprehensive real-time chemical
measurement systems to better characterize abundance,
spatial and temporal distributions, and physical and chemical
properties of pollutants and sourceereceptor relationships.
Improve data management and quality assurance systems to
ensure proper collection and distribution and near real-time
access of observations for RT-AQFs.

� Improve measurement techniques to characterize micro-
physical properties of clouds and aerosols (e.g., cloud droplet
number, PM number, mass, and size distributions and hygro-
scopicity, PM and cloud optical properties) in urban areas with
very high concentrations of cloud droplets and aerosols.
Improve representations of VOC chemistry via integrated field/
laboratory measurements and 3-D modeling to accurately
simulate O3, SOA, and organic air toxics such as HCHO. Reduce
the uncertainties in the kinetics of major inorganic chemical
reactions via well-designed laboratory experiments using
advanced measurement techniques.
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� Develop and improve accurate modules for PM thermody-
namics and dynamics, which are crucial to accurate RT-AQF.
These include modules for new particle formation, SOA
formation, and gas/particle mass transfer. Improve numerical
techniques for aerosol micro-physical simulations in terms of
both accuracy and computational efficiency. Processes
consuming most CPUs include coagulation, dynamic gas/
particle mass transfer, calculation of activity coefficients of
organic species, organic and inorganic PM interactions, fine
and coarse PM interactions, aerosol production via aqueous-
phase chemistry, and aerosol activation by cloud droplets.

� Couple RT-AQF models with improved observational systems
via CDA techniques and various bias correction methods to
improve next day’s forecasting.

� Conduct sensitivity simulations of historic episodes using
different combinations of options/mechanisms to identify an
optimal mechanism combination with the best model perfor-
mance for RT-AQF over a specific domain and time period. This
approach is subject to the same constraints (e.g., large metrics
of mechanisms/schemes, limited computer resources, and
knowledge of the users) as that for sensitivity simulations with
an NWP model. An additional challenge is that the best phys-
ical option combinations identified through sensitivity simu-
lations of meteorological forecasting models may not
necessarily lead to the best performance due to intricate rela-
tionship between meteorology and chemistry.

� Develop and improve online-coupled meteorological and RT-
AQF models to enable an accurate representation of the inter-
actions and feedbacks among meteorology, reactive gases, and
PM in the real atmosphere. Develop global-through-urban
online-coupled models to provide consistent chemical and
physical treatments for nested simulations at urban-to-
regional scales. Such consistencies can help reduce model
errors/uncertainties in forecasting at small scales.

� Apply a well-designed coupler to couple various model
components (e.g., between atmospheric and land processes)
and minimize time required for communications and data
exchanges.

5.2.5. Challenges in applying techniques for accuracy improvements
Many numerical and computational approaches have demon-

strated promising skills in reducing forecasting errors. Continuous
development and improvement of these techniques are critical to
the refinement of the forecasting skills of RT-AQF at all scales. Major
challenges include:

� Develop various bias correction approaches to minimize
model biases. These approaches largely rely on statistical
methods and available observations. Current applications of
these approaches focus on ground-level forecasting prod-
ucts; expanding such techniques to correct vertical profiles
of chemical species, column variables, and top BCONs will
be technically challenging. A skillful utilization of the state-
of-the-art statistical methods and limited observational
data is required to develop effective bias correction
techniques.

� Improve/expand various CDA techniques to reduce uncer-
tainties in model inputs and inaccuracies in existing and new
forecasting products including concentrations, deposition
fluxes, and their spatial and temporal variabilities, as well as
species vertical profiles and column abundance. Variational
methods (e.g., 3D-Var and 4D-Var) have certain advantages
over other methods in handling nonlinearity of the chemical
system and some observational data such as infrared radiance
data from satellites and should be further developed. Themajor
challenge remains a better understanding and control over
errors that may be intrinsic or extrinsic to the scheme.

� Develop and apply ensemble forecasting methods to reduce
forecast errors and estimate the resulting uncertainties.
Designing meaningful members and size of ensemble simu-
lations with limited computational resources and evaluating
the relative benefits obtained with multi-model vs. single-
model ensembles are difficult tasks. Probabilistic forecasting
can better describe the nature of likely events than purely
deterministic forecasting that often contains inherent and
unquantified uncertainties. It represents the most challenging
aspect of ensembles in which the ensembles must be designed
with a proper representativeness of uncertainties using
carefully-selected probability distribution of the model
output.

� Develop and apply post-simulation data fusion methods (e.g.,
MOS) to reduce model errors through a combination of
observations, a statistical model, and 3-D RT-AQF predictions.
The main challenges are to obtain sufficient amount of obser-
vations for data training to develop a robust linear regression
model and apply this model skillfully to correct predictions at
individual sites made by the deterministic model. Another
challenge lies in the implementation of advanced statistical
methods such as the Bayesianmodeling approach into this data
fusion framework.
5.2.6. Challenges in applying techniques for computational
efficiency improvements

Some approaches have been developed in the past to address
the computational aspects of RT-AQF. These techniques have
demonstrated promising skills in handling the computation-
related issues including memory requirement, efficiency, stability,
and scalability. Their continuous development and improvement
will undoubtedly support the continuous success of RT-AQF at all
scales and expansions of its applications over more areas by more
users, especially, those who cannot afford high performance
computing clusters. Major challenges include:

� Develop efficient parameterizations/representations of the
detailed model treatments to be used in the operational RT-
AQF and a benchmark to assess the magnitude of the poten-
tial biases introduced by simplified treatments and the impact
on the forecasting products.

� Ensure a high level of parallelism for computer codes for an
optimal speedup. Parallel computing has been increasingly
used for RT-AQFs on various platforms and should be contin-
uously used. Parallel computer programs, however, are more
difficult to write than sequential ones, because concurrency,
communication, and synchronization between different tasks
and subtasks often create the greatest obstacles to achieving an
optimal performance.

� Implement a high level of automation for RT-AQF in all steps
involved in forecasting including data downloading, pre-
processing, model simulations, data exchange between grids
and model components, post-processing and analysis, and
web-posting.

� Use refinement or enrichment techniques such as the dynamic
adaptive grid techniques for multi-scale nesting to surmount
the numerical difficulties associated with nested grids by
a continuous grid. These techniques can resolve important
features and allocate computational resources more wisely to
the resolution of scales needed for a better forecast and also
bridge the gaps between local and mesoscales and between
meso- and global scales more efficiently.
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� Explore other approaches for their potential in improving
efficiency yet maintaining a satisfactory accuracy. These may
include identifying the most time-consuming components for
optimization, using different numerical approaches to solve
atmospheric processes more efficiently, using more efficient
numerical solvers, developing regime-dependent chemical
mechanismswith fewer reactions and species for certain areas/
subdomains to reduce computational demands, optimizing
model configurations and forecasting simulation design on the
available computer architectures, and tailoring the model
performance toward the operational supercomputing hard-
ware and the parallel computing environment for effectively
managing input and output processes.

5.2.7. Challenges in promoting community outreach and increase of
awareness

Since RT-AQF is now a common practice at all levels of
government and research organizations worldwide and the RT-AQF
products are being widely used to issue health advisories and alert
the public to pollution episodes, RT-AQF has several unique chal-
lenges in technical training, community outreach, and increase of
public awareness that are typically not encountered (or to a much
lesser extent) by conventional air quality modeling. Major chal-
lenges include:

� Develop forecast guidance documents. Such guidance should
cover the methods, tools, and models to be used for RT-AQFs,
the evaluation protocols to judge their performance, and the
methods to interpret and use forecasting products. They can
also identify areas of improvements and priority research areas
to guide proper allocations of limited resources and serve to
nucleate immediate attention of the research and operational
communities for pressing issues.

� Establish effective education and training programs and
develop material to train potential forecasters at all levels to
meet the RT-AQF needs. Increasing amounts of resources
should be allocated from various governmental agencies,
educational organizations, and private sectors to educators
from research organizations and universities to develop and
maintain a long-term university curriculum and training
programs to train the next generation of air quality forecasters.

� Develop and strengthen community outreach and public
awareness programs. Adequate resources should be allocated
from governmental agencies to implement and support such
programs to disseminate forecasts and health concerns and
outreach college/university students, K-12 teachers and
students, public and private stakeholders (e.g., researchers and
educators), health-affected population, economy-affected
sectors, societal and economic impacts specialists, health insur-
ance specialists, farmers and other agricultural producers,
educational and other medias (weather service providers,
broadcastmeteorologists, Internet providers, newspapers, radio,
mobile services), and the emergency-response community. Such
programs should include forecast dissemination, needs assess-
ment, education, communication, and value assessment.

� Support and coordinate centralized RT-AQF efforts region-,
country-, and worldwide and promote domestic and interna-
tional science, information, data exchange, and experience and
knowledge sharing. Air pollution occurs at all scales and some
become regional and global concerns that are not limited to
geographical boundaries of the regions and countries.
Systematic coordination and close collaborations among
multiple organizations/countries to consolidate limited
resources for advancement of RT-AQF are important to its
continuous success.
5.3. Concluding remarks and outlooks

Similar to weather forecasting that affects everyone, RT-AQF has
emerged as a new forecasting discipline and is undergoing
substantial and rapid advances. It intersects with many science and
engineering disciplines but stands out among other disciplineswith
a special societal demand and technical requirement uniqueness. It
represents one of themost far-reaching developments and practical
applications of science and engineering, poses unprecedented
technical and computational challenges, and provides significant
opportunities for science dissemination, community communica-
tions, and societal participations to outreach a variety of stake-
holders. In the past decades, many cities and countries worldwide
have successfully launched RT-AQF systems that are based on tools
and models with varying degrees of sophistications ranging from
the simplest rule of thumb to themost advanced 3D online-coupled
meteorology and chemistry models.

For the decades to come, we envision a new generation of
a comprehensive RT-AQF system that will be centered on the state
of the science 3D RT-AQF models and supplemented with sophis-
tical statistical models. This system will be equipped with many
modern technologies to reduce forecasting biases and enhance
computational efficiencies including advanced techniques for
multi-scale data assimilation, multi-model ensemble forecasting,
adaptive downscaling, data fusion, and statistical post-processing
and be supported with a suite of real-time or near real-time
observational data from all platforms. The 3-D RT-AQF models are
now in the process of transition from offline-coupled to online-
coupled models and from mesoscale models to unified systems
across scales from global to urban. Such an advanced and
comprehensive RT-AQF system will address multiple air pollution
issues and resulting impacts at multiple scales (e.g., local-to-urban
air pollution, long-range transport, adverse health effects) and will
be capable of forecastingmultiple pollutants (e.g., O3, PM, CO, VOCs,
NH3, acids, and air toxics) on a short term basis (on the order of
a few to 10 days). This system can also be extended to forecast air
quality and its impacts in a long-term basis (multi-months or-
years) for climate change mitigation. The realization of this new
generation of RT-AQF system will represent a significant landmark
in the history of operational RT-AQF.
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